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Abstract. Reliable localization of abnormal lymph nodes in T2 Mag-
netic Resonance Imaging (MRI) scans is needed for staging and treat-
ment of lymphoproliferative diseases. Radiologists need to accurately
characterize the size and shape of the lymph nodes and may require an
additional contrast sequence such as diffusion weighted imaging (DWT)
for staging confirmation. The varied appearance of lymph nodes in T2
MRI makes staging for metastasis challenging. Moreover, radiologists
often times miss smaller lymph nodes that could be malignant over the
course of a busy clinical day. To address these imaging and workflow
issues, in this pilot work we aim to localize potentially suspicious lymph
nodes for staging. We use state-of-the-art detection neural networks to
localize lymph nodes in T2 MRI scans acquired through a variety of
scanners and exam protocols, and employ bounding box fusion tech-
niques to reduce false positives (FP) and boost detection accuracy. We
construct an ensemble of the best detection models to identify potential
lymph node candidates for staging, obtaining a 71.75% precision and
91.96% sensitivity at 4 FP per image. To the best of our knowledge, our
results improve upon the current state-of-the-art techniques for lymph
node detection in T2 MRI scans.
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1 Introduction

Lymph nodes (LN) are a part of the lymphatic system, and they contain immune
cells to help the body fight infection by filtering foreign substances in the
lymphatic fluid that flows through them. Localization of lymph nodes in the
abdomen is crucial as it allows enlarged and metastatic lymph nodes to be dis-
tinguished from non-metastatic lymph nodes [1-3]. It is especially paramount
to identify enlarged LN if they are found at sites that do not correspond to the
first site of lymphatic spread as this signals distant metastasis. Nodal location
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and size are important aspects of the AJCC tumor, lymph node, metastasis
(TNM) system [2], which provides guidelines for the diagnosis, management and
treatment strategy of cancer and lymphoproliferative disorders [1,2].

Multi-parametric MRI images are becoming widely used for cancer and
lymph node staging. Among the various MRI sequences, T2 and Diffusion
Weighted Imaging (DWI) are commonly preferred to image the LN [1,3-5].
Unfortunately, accurate staging is difficult due to their irregular shapes, het-
erogeneous anatomical location, diverse yet similar appearance to other tissue
structures (e.g. fat), and size. As shown in Fig.1(a), lymph nodes in T2 MRI
appear iso-intense (or slightly hyper-intense) relative to the surrounding fat [1]
making it difficult to distinguish them, and contrast agents are often adminis-
tered to reveal intensity differences between metastatic and normal LN tissue
[1,3]. Further confounding the analysis of LN is the multitude of MRI scanners
and exam protocols being used at different institutions to visualize abnormali-
ties.

Fig.1. (a) A T2 MRI image and (b) its normalized and histogram equalized counter-
part are shown. There are 3 annotated LN regions as shown in (c), which is the result
of our proposed ensemble detector; green boxes are the ground truth, yellow are the
true positives, and red are the false positives. (d) A large lymph node annotated with
both short and long axis diameters. (e) Failed segmentation result shown in red after
generating pseudo-mask using GrabCut from the annotations. Note the incomplete
segmentation of LN boundary (bottom left) that provides wrong training signals to a
detection + segmentation network. (Color figure online)

Nodal size is the widely used criteria to determine malignancy [1,6]. Radi-
ologists in clinical practice first localize the lymph nodes by scrolling back and
forth through the T2 MR slices, and measure an identified node by using two
orthogonal lines: the long and short axis diameters (LAD and SAD) [6]. Lymph
nodes with a mean SAD of 3-10 mm are considered normal when imaged using
conventional MRI, while those with a SAD of >10 mm are deemed suspicious for
metastasis [1]. At our institution however, the accepted guideline is for radiolo-
gists to complete nodal sizing with either both diameters or the LAD only. This
guideline can vary across institutions, thereby adding another obfuscating ele-
ment to the analysis of LN. Furthermore, as radiologists size lymph nodes often
during the course of a busy clinical day, despite their diligence, small LN might be
missed (>3mm) [3]. Thus, given the morbidity surrounding lymphoproliferative
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diseases and the imaging and workflow challenges, there is a need for automated
LN detection in T2 MRI images for subsequent sizing and staging.

Prior research has focused on the identification of lymph nodes in CT scans
[9-15] with limited work done on MRI scans to localize lymph nodes [3,7,8]. In
[3], a Mask-RCNN network was used to identify and segment lymph node regions
in a multi-parametric pelvic MRI image (2 DWI + 1 T2 image). They achieved
a sensitivity of 62.6% on their external testing dataset obtained from different
hospitals and different scanners with 8.2 FP being identified per volume. In [7],
initial lymph node candidate regions were detected using a GentleBoost classifier
trained on image features followed by a convolutional neural network (CNN) to
reduce false positives. Multiple views were incorporated into the CNN training
to provide 3D structure, and a sensitivity of 85% was achieved at the rate of 5—
10 FP per image. Finally, a Faster-RCNN was used in [8] to identify metastatic
pelvic LN with an AUC of 91.2%.

As T2 MRI is arduous enough to identify and stage lymph nodes with a
combination of T2 and DWI scans being preferred clinically, radiologist com-
plete their annotations on one of the two (or more) sequences. This requires the
registration of one sequence to another (e.g. DWI to T2) for reliable annotation
usage in algorithmic development. However, as documented in [3], insufficient
registration can result in errors that can lower the accuracy of LN detection.
Therefore, in this pilot work, we first opt to use challenging T2 MRI sequences
acquired using different scanners and exam protocols, and detect lymph nodes
with state-of-the-art detection networks [16-23]. The intention is that the rea-
sonable T2-based detection performance can be supplemented by the addition of
accurately registered DWI scans. We improve upon the detection performance
by using bounding box fusion techniques [24] that significantly reduce the num-
ber of FP detected by these networks. We detail results that either improve upon
or are on par with the performance of previously published lymph node detec-
tion approaches, despite a lower quantity of training data. Finally, to replicate
clinical use, we propose an ensemble of the best detection models and show its
applicability towards lymph node detection.

Contribution. 1) For the LN detection task, we use state-of-the-art models to
localize lymph nodes in T2 MRI and employ bounding box fusion techniques to
reduce false positives. 2) To mimic clinical usage, we propose a ensemble of the
best detection models to identify potential lymph node candidates for staging.

2 Methods

State-of-the-Art Object Detectors. We first quantified the performance of
state-of-the-art object detectors on the LN detection task in T2 MRI: 1) Faster
R-CNN [16], 2) DetectoRS [17], 3) YOLOv3 [18], 4) SSD [19], 5) RetinaNet
[20], 6) FCOS [21], 7) FoveaBox [22], and 8) VFNet [23]. We further subdivided
them into two categories: two-stage and one-stage detectors. Two-stage detec-
tors (e.g. Faster R-CNN, DetectoRS) are region-based; the first stage generates
region proposals corresponding to objects of interest, and the second stage clas-
sifies these region proposals and regresses the object bounding box coordinates.
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These types of detectors are slow and computationally expensive. DetectorRS
uses a Recursive Feature Pyramid (RFP) to add extra gradient feedback at the
Feature Pyramid Network (FPN) [27] bottom-up layers, and Switchable Atrous
Convolutions (SAC) to achieve peak object detection accuracy.

On the other hand, one-stage detectors [18-23| are faster as they skip the
region proposal stage, densely sample all possible locations for objects, and
directly predict the bounding box coordinates and class probabilities for different
categories in a single pass. One-stage detectors can further be subdivided into
anchor-based and anchor-free methods; anchor-based methods include YOLOv3
[18], SSD [19], and RetinaNet [20], while anchor-free methods include FCOS
[21], FoveaBox [22], and VFNet [23]. YOLOv3 and SSD were attempts at fast
and efficient object detection in images, but they were not suitable for detecting
small objects. RetinaNet [20], on the other hand, overcame the common class
imbalance problem plaguing detection tasks by using a focal loss function, along
with the FPN to represent objects at different scales. However, these meth-
ods (including Faster R-CNN) require optimization of the sizes, aspect ratios
and number of anchor boxes to achieve optimal object detection performance,
involving additional computation and hyperparameter optimization [21-23].

FCOS [21] navigates away from anchor-based configurations by incorporat-
ing a FPN-based multi-level prediction inside the Fully Convolutional Network
(FCN) [28], and a centerness score computed from the classification score to
reduce the FP that are far away from the target object center. VFNet combines
FCOS (without centerness branch) with an Adaptive Training Sample Selection
(ATSS), sets the IoU between the ground truth and the prediction as the clas-
sification score, integrates it into a novel IoU-aware Varifocal loss, develops a
star-shaped bounding box representation, and refines the box predictions. Fove-
aBox consists of a backbone to compute features from the input and a fovea head
network that estimates the object occurrence possibility through per pixel clas-
sification on the backbone’s output, and predicts the box at each position in the
image that may be potentially covered by an object. We chose the anchor-free
detectors in our experiment as they achieve superior results over anchor-based
and even two-stage detectors.

Weighted Boxes Fusion. Object detectors typically predict an object’s loca-
tion with bounding box coordinates and provide confidence scores for them.
Often times, ensembling over multiple selected epochs of a single detector or
over different object detection models adds generalization [24] to a detection task,
and yields more accurate results in contrast to a single model. Many strategies
[24,31,32] have been proposed to combine the predicted boxes to yield accurate
results, and we utilize weighted boxes fusion [24] as a post-processing step.

Ensemble of Best Detection Models. In order to add generalizability to the
predictions of the detection networks, a threshold of 60% on the precision was
set. Models that met the cut-off were ensembled together, leading to a higher
detection performance in comparison to a single model.

Data Description. The lymph node dataset consisted of abdominal MRI stud-
ies that were acquired between January 2015 and September 2019, and they
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were downloaded from the National Institutes of Health (NIH) Picture Archiv-
ing and Communication System (PACS). Initially, 584 T2-weighted MRI scans
and associated radiology reports from different patients (n = 584) were down-
loaded. As mentioned in Sect. 1, radiologists completed nodal sizing with both
the SAD and LAD, or with just the LAD. The lymph node size measured and
annotated by the radiologist on a slice in a scan is linked to the radiology report
using “bookmark” hyperlinks. NLP was used to find only lymph node related
bookmarks [33]. The lymph node extent and size measurements were extracted
from these bookmarks and considered the gold standard annotation.

Next, an experienced radiologist checked the collected data and filtered those
patients with scans that had incorrect annotations (e.g. kidney masses). Patients
with scans that also contained only LAD measurements were removed; the intent
was to standardize the data and analysis with the AJCC TNM guidelines [2].
This process resulted in a total of 376 T2 MRI scans (n = 376 patients) with
520 distinct lymph nodes that had been annotated with both the LAD and SAD
measurements. The voxels in the scans were normalized to be within the 1%-99%
of their intensity range [25]. As seen in Fig. 1, it increases the contrast between
the bright and dark structures in T2 MRI scans, and mitigates the effect of
outlier intensities from the image sensors present in various MRI scanners.

Following normalization, contrast enhancement of important structures, such
as lymph nodes, was achieved through histogram equalization [26] without the
excessive enhancement of image noise. The final dataset was then randomly
divided into training (60%, 225 scans), validation (20%, 76 scans), and test
(20%, 75 scans) splits at the patient-level. The resulting scans had dimensions
in the range from (256-640) x (192-640) x (18-60) voxels. In contrast to prior
detection and segmentation approaches [3,29], we do not rely on pseudo masks
(e.g. generated through GrabCut); as seen in Fig. 1, their synthesis from radiol-
ogist annotations can often be incorrect and affect the training of the detection
and segmentation networks, such as Mask RCNN [30].

Implementation Details. Radiologists focus their LN sizing efforts over a
few slices of specific MRI sequences (e.g. T2), and generally corroborate their
finding with another sequence (e.g. DWI). Prior work suggests that either 1- or
3- slice(s) are sufficient for the sizing task, with in-plane slice providing the most
information [7]. With this in mind, we generated 3-slice T2 MRI images with
the center slice containing the radiologist annotated LN, and used these 3-slices
as the input for the detection networks. We used the framework proposed in [34]
to implement the various one-stage and two-stage detectors used in this work.
ResNet50 was used as the backbone for Faster R-CNN, DetectoRS, RetinaNet,
FCOS, FoveaBox, and VFNet, while YOLOv3 used DarkNet53 and SSD used the
VGG16 backbone. All the models were trained starting with the pre-trained MS
COCO weights. Data augmentation included random flipping, random crops,
random shifts and rotations in the range of [0, 32] pixels, and [0, 10] degrees
respectively. A grid search was run on the batch size and learning rate for each
model resulting in a batch size of 2 samples. The learning rate for YOLOv3,
DetectoRS, SSD, FCOS, FoveaBox, and VFNet was le-3, while it was 25e-4 for
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Faster R-CNN and RetinaNet. Each model was trained for 24 epochs, and the
5 epochs with the lowest validation loss were ensembled together and used for
LN detection. In contrast, the models in the final detection ensemble only had
1 epoch with the lowest validation loss. These results are shown in Table 1. All

experiments were run on a workstation running Ubuntu 16.04LTS and containing
a NVIDIA Tesla V100 GPU.

Baseline Comparisons. We compare our lymph node detection results against
those obtained by [3] on multi-parametric pelvic MRI, [7] on T1-weighted pelvic
MRI, [9,10] on mediastinal LN in chest CT, and [11] on abdominal and medi-
astinal LN in CT.

(a) DetectoRS (b) FCOS (c) FoveaBox (d) VFNet (e) Ensemble

Fig. 2. Columns (a)—(d) show the lymph node detection results of the best detectors
(DetectoRS, FCOS, FoveaBox, VFNet) incorporated into our ensemble on four differ-
ent MRI images. Column (e) displays the result of our ensemble detector following
Weighted Boxes Fusion. Green boxes are the ground truth, yellow are the true posi-
tives, and red are the false positives. Note that some detectors (e.g. DetectoRS) miss
detecting lymph nodes (rows 1 and 2, col 1), but the ensemble detector benefits from
the prediction of the remaining networks to yield the final detections.

3 Results and Discussion

Results. A clinically acceptable result [3] for lymph node detection is a pre-
cision of >60%, sensitivity of 85%, and 4-6 FP per image. Missing potentially
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Table 1. Detection performance of various state-of-the-art detectors and our proposed
ensemble method. “S” stands for Sensitivity @[0.5, 1, 2, 4, 6, 8, 16] FP

Method mAP |S@0.5/S@1 |S@2 |S@4 |S@6 |S@8 |SQl6
Faster R-CNN [16] 58.72 | 61.90 |70.23 |80.95 |83.33 |83.33 |83.33 |83.33
DetectoRS [17] 61.83 | 66.67 |73.81 |77.38 |80.95 |80.95 80.95 |80.95
YOLOV3 [18] 56.42 | 65.47 |66.67 |77.38 |77.38 |77.38 |77.38 |77.38
SSD [19] 40.21 | 35.71 |57.14 |70.23 |79.76 | 79.76 | 79.76 |82.14
RetinaNet [20] 57.36 | 53.57 |65.47 |77.38 |83.33 |86.90  88.09 |89.28
FCOS [21] 60.09 |61.90 |77.38 | 83.33 |88.09 |89.28 |89.28 |89.28
FoveaBox [22] 61.67 | 61.90 |76.19 |79.76 |84.52 |88.09 | 89.28 |89.28
VFNet [23] 63.91 | 67.85 |75 80.95 | 83.33 |83.33 |83.33 |83.33
Ensemble (VFNet + FoveaBox + FCOS + DetectoRS) | 71.75 | 73.81 | 79.76 | 85.71 | 91.66 | 91.66 | 91.66 | 91.66
Ensemble (SAD < 10 mm) 61.77 | 64.51 |77.41 |87.09 |87.09 |87.09 |87.09 |87.09
Ensemble (SAD > 10 mm) 74.30 | 77.35 |81.13 | 84.91 |94.34 |94.34 | 94.34 | 94.34

metastatic lymph nodes would be problematic, so we strive for a reasonable
trade-off between precision and recall. Detection results are presented in Fig. 2
and Table1 in terms of mean average precision (mAP) and sensitivity on the
test dataset. YOLOv3 and SSD perform the worst in terms of LN detection with
a precision of <60% and sensitivity of <80% indicating that they had significant
issues with detecting LN <10mm. RetinaNet and Faster R-CNN had higher
sensitivities (>80%) at 4 FP per image, but their mAP values were still low and
below our precision cut-off for ensembling. The detectors surpassing the >60%
precision threshold included FCOS, FoveaBox, VFNet, and DetectoRS, with
the maximum mAP of 63.91% achieved by VFNet. The one-stage anchor-free
detectors significantly outperformed the anchor-based and two-stage detectors.
Although promising, it was difficult to establish a clear winner amongst the
anchor-free detectors. To this end, we ensembled the models passing the cut-off
to obtain the highest LN detection performance with a mAP of 71.75% and
91.66% sensitivity at 4 FP per image. Against [3], our mAP is 71.75% vs 64.5%,
and recall is 91.66% vs 62.6% at 8 FP. Against [7], our sensitivity is 91.66% vs
80% at 8 FP per image. Compared with [9-11], we obtain sensitivities of 91.66%
at 4 FP vs 66% at 4 FP, 88% at 6 FP, and 90% at 6 FP respectively.

We further analyzed the behavior of the ensemble detector on lymph nodes
when they were stratified by size. The ensemble model posts a moderate perfor-
mance of 61.77% mAP and sensitivity of 87.09% at 4 FP per image when tested on
LN with a SAD of <10 mm. One reason for the lower mAP is the ensemble detects
many FP (as seen in Fig. 2, 2" row) due to the small size of the LN, thereby lower-
ing the mAP. Our results are similar to those of [3] at ~65% sensitivity, but we still
achieve a significantly higher recall without the use of DWI sequences. On the other
hand, we attain a mAP of 74.30% and sensitivity of 94.34% at 4 FP per image on
lymph nodes with SAD >10 mm. These results are again consistent with past liter-
ature [3,12,13], yet we considerably outperform their results with a >10% increase
in sensitivity. Our ensemble detector executes in 285 ms/22 s per image/volume vs.
862 ms/67 s from DetectoRS, 218 ms /17 s from FCOS, 134 ms/10 s from FoveaBox,
and 276 ms/22 s from VFNet respectively.
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Discussion. As described above, the two-stage Faster R-CNN and one-stage
anchor-based detectors (YOLOv3, SSD, RetinaNet) resulted in significantly infe-
rior detection performance and did not match our clinical implementation stan-
dards. Potential reasons for their performance include anchor ratio, size, and
box optimization, and detection difficulties when encountering LN candidates
with small size (<5mm). In contrast, two-stage DetectoRS and the anchor-free
detectors (FCOS, FoveaBox, VFNet) met our clinical use goals, and yielded sig-
nificantly improved detection results as shown in Table 1. Weighted Boxes Fusion
was the only post-processing step that was undertaken as it was necessary to
fuse multiple detections from different models, but it is a small price to pay
for the substantial increase in mAP and sensitivity. Of note, our results were
achieved by taking off-the-shelf object detectors, and retraining them on a diffi-
cult T2 MRI dataset. The results were unencumbered by optimization of anchor
parameters and free of region proposal generation. These make the networks
simpler with fewer network weights to be learned, thereby reducing the chances
of overfitting to the small training dataset. In fact, the only major parameter
tuning that was done was with respect to the batch size and optimizer learning
rate. We believe that this shows the power of the anchor-free detection networks
without the need for a complicated training pipeline design [35].

We do not use DWI scans and this is a limitation of our work as it is rou-
tine practice for radiologists to confirm a finding on T2 MR with DWI. The
ensemble performs satisfactorily on lymph nodes of size (<10 mm), but smaller
lymph nodes (<3 mm) can be potentially metastatic [36], and a multi-parametric
MRI input to the network might boost the detection performance of smaller LN.
Future work is oriented towards the utilization of different MRI sequences (e.g.
DWI and T1) to localize LN better. A structured report on the lymph node char-
acteristics can also be created detailing the location, exam protocol, malignancy
status, etc., thereby reducing this tedious analysis workload of the radiologists.

4 Conclusion

In this paper, we first quantify the performance of state-of-the-art object detec-
tors on localizing lymph nodes in challenging T2 MRI scans. Weighted Boxes
Fusion was used to then fuse the bounding box predictions from multiple epochs
of a model to boost the detection performance. Consequently, a max mAP of
63.91% for VFNet and max sensitivities of 89.28% were achieved by FCOS
and FoveaBox respectively. Next, we ensembled the best performing detectors
together, which were VFNet, FCOS, FoveaBox and DetectoRS, to yield the high-
est mAP of 71.65% and sensitivity of 91.66% at 4 FP per image. We also stratified
the results based on lymph node size, and found the ensemble performance to be
significantly better than the current state-of-the-art in lymph node detection.
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